perm filename EQUIV.AX[S79,JMC] blob
sn#453705 filedate 1979-06-25 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00002 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 !Axioms for proving existence of set of equivalence classes!
C00003 ENDMK
C⊗;
COMMENT !Axioms for proving existence of set of equivalence classes!
DECLARE PREDPAR R 2;
AXIOM EQUIV: ∀x.R(x,x)
∀x y.(R(x,y) ≡ R(y,x))
∀x y z.(R(x,y) ∧ R(y,z) ⊃ R(x,z));;
DECLARE INDVAR a;
DECLARE INDVAR r1 r2;
COMMENT !To show: ∃r.(∀x y.(xεa ∧ yεa ⊃ (R(x,y) ≡ ∃s.(sεr ∧ xεs ∧ yεs)))
∧ ∀s.(sεr ⊃ ∃x.(xεs ∧ ∀y.(R(x,y) ≡ yεs)))) !